Mathematics 2200
 Sample Midterm

Name: \qquad

FORMULAE

$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} a^{2}=b^{2}+c^{2}-2 b c \cos A \frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$

Selected Response:

1. An angle measures 265° in standard position. What is the corresponding reference angle?
(A) 5°
(B) 15°
(C) 85°
(D) 95°
2. What is the exact value of $\cos \left(300^{\circ}\right)$?
(A) $-\frac{\sqrt{3}}{2}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{2}$
(D) $\frac{\sqrt{3}}{2}$
3. What is the exact length of $B C$?

(A)
6
(B) 12
(C) $4+4 \sqrt{3}$
(D) $4 \sqrt{2}+4 \sqrt{3}$
4. The point $(6,-8)$ lies on the terminal arm of an angle θ in standard position. What is the value of $\sin \theta$?
(A) $-\frac{4}{3}$
(B) $-\frac{4}{5}$
(C) $\frac{3}{5}$
(D) $\frac{4}{5}$
5. An angle θ, is plotted in standard position, and its terminal arm lies in quadrant II. Given that $\sin \theta=\frac{21}{29}$, what is $\tan \theta$?
(A) $-\frac{21}{20}$
(B) $-\frac{20}{29}$
(C) $\frac{20}{29}$
(D) $\frac{21}{20}$
6. Solve: $\cos \theta=-0.6947$, where $0^{\circ} \leq \theta \leq 360^{\circ}$
(A)
$\theta=46^{\circ}$ and $\theta=134^{\circ}$
(B) $\theta=46^{\circ}$ and $\theta=314^{\circ}$
(C) $\quad \theta=134^{\circ}$ and $\theta=226^{\circ}$
(D) $\theta=226^{\circ}$ and $\theta=314^{\circ}$
7. What is the length of \boldsymbol{x} ?

(A)
7.2
(B) 10.4
(C) 11.3
(D) 16.2
8. What is the standard form of the function $y=-3(x+2)^{2}+4$?
(A) $-3 x^{2}-8$
(B) $-3 x^{2}-12 x-48$
(C) $-3 x^{2}-12 x-8$
(D) $-3 x^{2}-12 x-12$
9. What is the range of $-3(y-5)=(x+2)^{2}$?
(A) $\{y \mid y>-5, y \in R\}$
(B) $\{y \mid y \geq-5, y \in R\}$
(C) $\{y \mid y<5, y \in R\}$
(D) $\{y \mid y \leq 5, y \in R\}$
10. Which represents the function $y=2 x^{2}-4 x-5$?
(a)
11. What is the equation of the axis of symmetry for a parabola given by $y=-2 x^{2}+12 x+5$?
(A) $x=3$
(B) $x=-3$
(C) $x=-5$
(D) $x=5$
12. Which represents a parabola with y-intercept -15 and vertex $(1,-5)$?
(A) $\quad f(x)=-20(x-1)^{2}-5$
(B) $f(x)=-20(x+1)^{2}+5$
(C) $\quad f(x)=-10(x-1)^{2}-5$
(D) $f(x)==10(x+1)^{2}+5$
13. If $y=2 x^{2}+12 x+10$ is written in the form $y=a(x-p)^{2}+q$, what is the value of \boldsymbol{q} ?
(A)
-26
(B) -8
(C) 1
(D) 28
14. A rancher plans to use 430 m of fencing to build a cattle enclosure with three equal sections. Which represents the total area of the enclosure in terms of its width, x ?

(A) $\quad A=x(215-2 x)$
(B) $A=x(215-2 x)$
(C) $\quad A=x(430-2 x)$
(D) $A=x(430-x)$
15. What are the x -intercepts of $y=x^{2}+7 x-30$?
(A) $(-15,0),(2,0)$
(B) $(-3,0),(10,0)$
(C) $(-2,0),(15,0)$
(D) $(-10,0),(3,0)$
16. What are the roots of $(2 x-1)(x+5)=0$?
(A) $\frac{-1}{2},-5$
(B) $\frac{1}{2},-5$
(C) $\frac{1}{2}, 5$
(D) $\frac{-1}{2}, 5$

Theresa's incorrect solution to the equation $4 x^{2}-7 x-3=0$ is shown. In which step does the first error occur?

Step 1	$x=\frac{7 \pm \sqrt{(-7)^{2}-(4)(4)(-3)}}{2(4)}$
Step 2	$x=\frac{7 \pm \sqrt{49-48}}{8}$
Step 3	$x=\frac{7 \pm \sqrt{1}}{8}$
Step 4	$x=1, x=\frac{3}{4}$

(A)
1
(B) 2
(C) 3
(D) 4
18. Which describes the quadratic function that has vertex $(-9,3)$ and passes through the point $(-4,-2)$?
(A) The axis of symmetry is $x=-9$ and the discriminant is negative.
(B) The axis of symmetry is $x=-9$ and the discriminant is positive.
(C) The axis of symmetry is $x=9$ and the discriminant is negative.
(D) The axis of symmetry is $x=9$ and the discriminant is positive.
19. Solve: $2 x(x-3)+5(x-3)=0$
(A) $\quad x=-3, \quad x=-\frac{5}{2}$
(B) $x=-3, x=\frac{5}{2}$
(C) $\quad x=3, \quad x=-\frac{5}{2}$
(D) $x=3, \quad x=\frac{5}{2}$
20. Determine a simplified expression for the value of \boldsymbol{x} :

(A)
$2 \sqrt{3}+\sqrt{5}$
(B) $2 \sqrt{3}+3 \sqrt{5}$
(C) $4 \sqrt{3}+\sqrt{5}$
(D) $4 \sqrt{3}+3 \sqrt{5}$
21. Write $4 x^{3} y^{2} \sqrt{5 x y}$ as an entire radical.
(A)
$\sqrt{20 x^{7} y^{5}}$
(B) $\sqrt{20 x^{10} y^{5}}$
(C) $\sqrt{80 x^{7} y^{5}}$
(D) $\sqrt{80 x^{10} y^{5}}$
22. Simplify completely: $\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$
(A)
$3 \sqrt{2}-2 \sqrt{3}$
(B) $3 \sqrt{2}+2 \sqrt{3}$
(C) $\frac{3 \sqrt{2}-2 \sqrt{3}}{5}$
(D) $\frac{3 \sqrt{2}+2 \sqrt{3}}{5}$
23. Simplify completely: $\frac{\sqrt[3]{2}}{\sqrt[3]{6}}$
(A)
$\frac{\sqrt[3]{3}}{3}$
(B) $\frac{\sqrt[3]{9}}{3}$
(C) $\frac{\sqrt[3]{12}}{6}$
(D) $\frac{\sqrt[3]{72}}{6}$
24. Which is $-2 \sqrt[5]{160 x^{5} y^{6}}$ written in simplest radical form?
(A) $-4 x y \sqrt[5]{5 y}$
(B) $-2 x y \sqrt[5]{5 y}$
(C) $-4 x y \sqrt[5]{10 y}$
(D) $-2 x y \sqrt[5]{10 y}$
25. Which is $\frac{\sqrt{24}}{3-\sqrt{2}}$ in simplified form?
(A) $\frac{6 \sqrt{6}-4 \sqrt{3}}{13}$
(B) $\frac{6 \sqrt{6}-4 \sqrt{3}}{11}$
(C) $\frac{6 \sqrt{6}+4 \sqrt{3}}{7}$
(D) $\frac{6 \sqrt{6}+4 \sqrt{3}}{5}$
26. Which represents the product of $\sqrt[3]{4 k}\left(\sqrt[3]{12 k^{2}}+2 \sqrt[3]{8}\right)$ in simplest radical form?
(A) $2 k \sqrt[3]{6}+2 \sqrt[3]{4 k}$
(B) $2 k \sqrt[3]{6}+4 \sqrt[3]{4 k}$
(C) $12 k \sqrt[3]{4}+2 \sqrt[3]{4 k}$
(D) $k \sqrt[3]{48}+2 \sqrt[3]{32 k}$

Constructed Response:

Answers to be written on this paper in the space provided. Show all workings.

1. Solve each of the following trigonometric equations for all possible values 4 marks of θ, where $0^{\circ} \leq \theta \leq 360^{\circ}$.
(A) $\cos \theta=-\frac{\sqrt{2}}{2}$
(B) $\tan \theta=\sqrt{3}$

2. From a height of 2 m , a volleyball is hit into the air. After 1 second, the ball reaches a maximum height of 7 m . Write the quadratic function, in the form $y=a(x-p)^{2}+q$, that models the situation and use it to determine the height of the ball at 1.5 seconds.

Function
Height
4. A rectangular lot is bounded on one side by a river and on the other three sides by a total of 100 m of fencing.
(A) Algebraically determine the quadratic function that models the area. 2 marks
(B) What are the dimensions of the largest possible lot and the maximum area? 3 marks
5. Algebraically determine the exact roots, in simplest form:

$$
16\left(x^{2}-1\right)=24(2 x+1)
$$

6. The right triangle shown has a perimeter of 24 cm and an area of $(2 y+14) \mathrm{cm}^{2}$. Algebraically determine the value(s) of \boldsymbol{x} and \boldsymbol{y}.

$x+5$
7. Simplify each of the following.
(A) $(5 \sqrt{2 x}+\sqrt{5})(-4 \sqrt{2 x}+\sqrt{5 x}) \quad 3$ marks
(B) $-3 \sqrt{7 r^{3}} \cdot 6 \sqrt{7 r^{2}}$

3 marks
8. Algebraically solve the following equation for x .

4 marks

$$
\sqrt{x-1}=x-7
$$

