Unit Test - Quadratic Equations

Name: \qquad
Part A: Multiple Choice Place the letter that corresponds with the correct answer in the space provided to the right. (13 marks)
$\ldots \quad / 25=\quad \%$

1. What value of c makes the expression $x^{2}+9 x+c$ a perfect square?
2. \qquad
A) $\frac{9}{2}$
B) 9
C) $\frac{81}{4}$
D) 81
3. Factor $-3 x^{2}+6 x+24$ completely.
4. \qquad
A) $-3(x-4)(x+2)$
B) $-3(x+4)(x-2)$
C) $-3(x-4)(x-2)$
D) $-3(x+4)(x+2)$
5. What are the roots of $x^{2}=5 x+14$?
6. \qquad
A) $x=-2$ and $x=-7$
B) $x=-7$ and $x=2$
C) $x=7$ and $x=-2$
D) $x=7$ and $x=2$
7. What is the simplest form of $\frac{-5 \pm \sqrt{75}}{5}$?
8. \qquad
A) $1 \pm 5 \sqrt{3}$
B) $-1 \pm 5 \sqrt{3}$
C) $-1 \pm \sqrt{75}$
D) $-1 \pm \sqrt{3}$
9. What are the zeros of $y=(x-2)(2 x+3)$?
10. \qquad
A) $\left\{-2, \frac{2}{3}\right\}$
B) $\quad\left\{-2, \frac{3}{2}\right\}$
C) $\quad\left\{2,-\frac{2}{3}\right\}$
D) $\left\{2,-\frac{3}{2}\right\}$
11. What are the roots of $0=2 x^{2}-36$? \qquad
A) $\pm 3 \sqrt{2}$
B) $3 \sqrt{2}$
C) ± 6
D) $\pm 6 \sqrt{2}$
12. The length of a rectangular parking lot is three more than twice its width. If the \qquad area is $96 \mathrm{~m}^{2}$, which equation would be used to determine the dimensions?
A) $x(2 x+3)=96$
B) $2 x(x+3)=96$
C) $x(3 x+2)=96$
D) $y(2 x+3)=96$
13. A quadratic equation $f(x)=0$ has two different real roots.
14. \qquad
Which is the graph of $f(x)$?
A)

B)

C)

D)

15. Given the quadratic equation $2 x^{2}-4 x+c=0$, find the value of c if the
16. \qquad equation has two equal real roots.
A) $c=-2$
B) $\quad c=2$
C) $\quad c=-\frac{1}{2}$
D) $\quad c=\frac{1}{2}$
17. Given the function $g(x)=-4(x-1)^{2}+8$ what is the nature of the roots of \qquad

$$
g(x)=0 ?
$$

A) no real roots
B) one real root
C) real and equal
D) real and unequal
11. If $x=5$ is one root of the equation $x^{2}+\mathrm{k} x+40=0$, what is the value of ' k '? \qquad
A) -13
B) $\quad-10$
C) 10
D) 13
12. What are the roots of $2 x^{2}-5 x-3=0$? \qquad
A) $\{6,-1\}$
B) $\{-6,1\}$
C) $\left\{-\frac{1}{2}, 3\right\}$
D) $\left\{\frac{1}{2},-3\right\}$
13. Which statement is TRUE of the function $y=-2 x^{2}+3$?
13. \qquad
A) The parabola opens down and has a y-intercept of 3 , therefore it crosses the x-axis twice.
B) The parabola has a discriminant of -24 , therefore has two real roots.
C) The parabola opens down and has a y-intercept of -3 , therefore it does not cross the x -axis.
D) The parabola has x-intercepts at -2 and 3 .

Part B: Short Answer Questions
Complete each of the following in the space provided. Be sure to show ALL necessary workings to receive full credit. (12 marks)

1. Factor completely. $2(x+5)^{2}+3(x+5)-2$
(4 marks)
2. Algebraically determine the EXACT roots in simplest form for: (4 marks)

$$
6(2-x)=3 x^{2}+6 x
$$

3. A rectangular garden has dimensions 10 m by 8 m . The gardener wants to put a flowerbed of uniform width along two adjacent sides of the garden as shown. If the area of the garden including his new strip is $168 \mathrm{~m}^{2}$, what is the width of the strip?
(4 marks)

