Advanced Mathematics 2200

Unit 4: Quadratics Equations

Text: Pre – Calculus 11 Chapter 4

By the end of the unit, it is expected that students will:

Outcomes	Text Book
Solve problems that involve quadratic equations.	Section 4.1 pp. 206 - 217
 Explain, using examples, the relationship among the roots of a quadratic equation, the zeros of the corresponding quadratic function and the x- intercepts of the graph of the quadratic function. 	pp. 200 22.
 Solve a quadratic equation of the form ax² + bx + c, a ≠ 0 by using strategies such as: 	
- determining square roots - factoring	
- completing the square	
applying the quadratic formulagraphing its corresponding function.	
2. Factor polynomial expressions of the form: $ax^2 + bx + c$, $a \ne 0$	Section 4.2 pp. 218 - 233
$-a^2x^2 - b^2y^2, a \neq 0, b \neq 0$	
$-a(f(x))^2 - b(f(x)) + c, a \neq 0$	
- $a^2(f(x))^2 - b^2(g(y))^2$, $a \neq 0$, $b \neq 0$ where a , b , and c are rational numbers.	
Factor a given polynomial expression that requires the identification of common factors.	
Factor a given polynomial expression of the form:	
$-ax_2+bx+c, a\neq 0$	
- a_2x_2 - b_2y_2 , $a \neq 0$, $b \neq 0$	
Determine whether a given binomial is a factor for a given polynomial expression, and explain why or why not.	
• Factor a given polynomial expression that has a quadratic pattern, including: $-a(f(x))^2 - b(f(x)) + c, a \neq 0$	
	Section 4.3
$-a^{2}(f(x))^{2}-b^{2}(g(y))^{2}, a \neq 0, b \neq 0$	pp.234-243
Derive the quadratic formula, using deductive reasoning.	
Identify and correct errors in a solution to a quadratic equation.	Section 4.4

 Select a method for solving a quadratic equation, justify the choice, and verify the solution. 	pp.244-256
 Explain, using examples, how the discriminant may be used to determine whether a quadratic equation has two, one, or no real roots; and relate the number of zeros to the graph of the corresponding quadratic function. 	
 Solve a problem by: analyzing a quadratic equation determining and analyzing a quadratic equation. 	