Advanced Mathematics 2200 Unit 3: Quadratic Functions

Text: Pre-Calculus 11

Chapter 3

By the end of this unit, it is expected that students will:

	Outcome	Text Book
1.	 Analyze quadratics of the form y = a(x - p)² + q and determine the: vertex domain and range direction of opening axis of symmetry x and y intercept 	Section 3.1 Pages 142 - 162
•	Explain why a function given in the form $y = a(x-p)^2 + q$ is a quadratic function.	
•	Compare the graphs of a set of functions of the form $y = ax^2$ to the graph of $y = x^2$, and generalize, using inductive reasoning, a rule about the effect of a .	
•	Compare the graphs of a set of functions of the form $y = (x - p)^2$ to the graph of $y = x^2$, and generalize, using inductive reasoning, a rule about the effect of p .	
•	Compare the graphs of a set of functions of the form $y = x^2 + q$ to the graph of $y = x^2$, and generalize, using inductive reasoning, a rule about the effect of q .	
•	Determine the coordinates of the vertex for a quadratic function of the form $y = a(x-p)^2 + q$, and verify with or without technology.	
•	Generalize, using inductive reasoning, a rule for determining the coordinates of the vertex for quadratic functions of the form $y = a(x-p)^2 + q$.	
•	Sketch the graph of $y = a(x-p)^2 + q$, using transformations, and identify the vertex, domain and range, direction of opening, axis of symmetry and <i>x</i> -and <i>y</i> -intercepts.	
•	Explain, using examples, how the values of a and q may be used to determine whether a quadratic function has zero, one or two x-intercepts.	
•	Write a quadratic function in the form $y = a(x-p)^2 + q$ for a given graph or a set of characteristics of a graph.	

2.	 Analyze quadratics of the form y = ax² + bx + c and determine the: vertex domain and range direction of opening axis of symmetry x and y intercepts and to solve problems. 	Section 3.2 Pages 163 – 179
•	Determine the characteristics of a quadratic function given in the form $y = ax^2 + bx + c$, and explain the strategy used.	
•	Sketch the graph of a quadratic function given in the form $y = ax^2 + bx + c$.	
•	Explain the reasoning for the process of completing the square as shown in a given example.	Section 3.3 Pages 180 – 200
•	Write a quadratic function given in the form $y = ax^2 + bx + c$ as a quadratic function in the form $y = a(x-p)^2 + q$ by completing the square.	
•	Identify, explain and correct errors in an example of completing the square.	
•	Verify, with or without technology, that a quadratic function in the form $y = ax^2 + bx + c$ represents the same function as a given quadratic function in the form $y = a(x-p)^2 + q$.	
•	Write a quadratic function that models a given situation, and explain any assumptions made.	
•	Solve a problem, with or without technology, by analyzing a quadratic function.	
<	Review	Pages 198 – 200
<	Practice Test	Pages 201 – 203

Т

٦