Advanced Mathematics 2200
 Unit 3: Quadratic Functions

Text: Pre-Calculus 11

Chapter 3

By the end of this unit, it is expected that students will:

Outcome
1. Analyze quadratics of the form $y=a(x-p)^{2}+q$ and determine the:
- vertex
- domain and range
- direction of opening axis of symmetry y intercept

- Explain why a function given in the form $y=a(x-p)^{2}+q$ is a quadratic function.
- Compare the graphs of a set of functions of the form $y=a x^{2}$ to the graph of $y=x^{2}$, and generalize, using inductive reasoning, a rule about the effect of \boldsymbol{a}.
- Compare the graphs of a set of functions of the form $y=(x-p)^{2}$ to the graph of $y=x^{2}$, and generalize, using inductive reasoning, a rule about the effect of \boldsymbol{p}.
- Compare the graphs of a set of functions of the form $y=x^{2}+q$ to the graph of $y=x^{2}$, and generalize, using inductive reasoning, a rule about the effect of \boldsymbol{q}.
- Determine the coordinates of the vertex for a quadratic function of the form $y=a(x-p)^{2}+q$, and verify with or without technology.
- Generalize, using inductive reasoning, a rule for determining the coordinates of the vertex for quadratic functions of the form $y=a(x-p)^{2}+q$.
- Sketch the graph of $y=a(x-p)^{2}+q$, using transformations, and identify the vertex, domain and range, direction of opening, axis of symmetry and x and y-intercepts.
- Explain, using examples, how the values of a and q may be used to determine whether a quadratic function has zero, one or two x-intercepts.
- Write a quadratic function in the form $y=a(x-p)^{2}+q$ for a given graph or a set of characteristics of a graph.

Section 3.1
Pages 142-162
2. Analyze quadratics of the form $y=a x^{2}+b x+c$ and determine the:

- vertex
- domain and range
- direction of opening axis of symmetry
- x and y intercepts
and to solve problems.
- Determine the characteristics of a quadratic function given in the form $y=a x^{2}+b x+c$, and explain the strategy used.
- Sketch the graph of a quadratic function given in the form $y=a x^{2}+b x+c$.
- Explain the reasoning for the process of completing the square as shown in a given example.
- Write a quadratic function given in the form $y=a x^{2}+b x+c$ as a quadratic function in the form $y=a(x-p)^{2}+q$ by completing the square.
- Identify, explain and correct errors in an example of completing the square.
- Verify, with or without technology, that a quadratic function in the form $y=a x^{2}+b x+c$ represents the same function as a given quadratic function in the form $y=a(x-p)^{2}+q$.
- Write a quadratic function that models a given situation, and explain any assumptions made.
- Solve a problem, with or without technology, by analyzing a quadratic function.

	Review	Pages 198-200
$<$	Practice Test	Pages 201-203

