Unit 2: Trigonometry
Text: Pre - Calculus 11

By the end of the unit, it is expected that students will:

Outcomes	Text Book
1. Demonstrate an understanding of angles in standard position $\left[0^{\circ}\right.$ to $\left.360^{\circ}\right]$.	Section 2.1 pp. 74-87

- Sketch an angle in standard position, given the measure of the angle.
- Determine the quadrant in which a given angle in standard position terminates.
- Determine the reference angle for an angle in standard position.
- Explain, using examples, how to determine the angles from 0° to 360° that have the same reference angle as a given angle.
- Illustrate, using examples, that any angle from 90° to 360° is the reflection in the x-axis and/or the y-axis of its reference angle.
- Draw an angle in standard position given any point $P(x, y)$ on the terminal arm of the angle.
- Illustrate, using examples, that the points $P(x, y), P(-x, y), P(-x,-y)$ and $P(x,-y)$ are points on the terminal sides of angles in standard position that have the same reference angle.

2. Solve problems, using the three primary trigonometric ratios for angles from 0° to

Section 2.2 360° in standard position.

- Determine, using the Pythagorean theorem, the distance from the origin to a point $P(x, y)$ on the terminal arm of an angle.
- Determine the value of $\sin \theta, \cos \theta$, or $\tan \theta$ given any point $P(x, y)$ on the terminal arm of angle θ.
- Determine the sign of a given trigonmetric ratio for a given angle, without the use of technology, and explain.
- Sketch a diagram to represent a problem.
- Determine, without the use of technology, the value of $\sin \theta, \cos \theta$, or $\tan \theta$ given any point $P(x, y)$ on the terminal arm of angle θ, where $\theta=0^{\circ}, 90^{\circ}, 180$ ${ }^{\circ}, 270^{\circ}$ or 360°.
- Solve, for all values of θ, an equation of the form $\sin \theta=a$ or $\cos \theta=a$, where $11 a-\leq \leq$, and an equation of the form $\tan \theta=a$, where a is a real number.
- Determine the exact value of the sine, cosine or tangent of a given angle with a reference angle of $30^{\circ}, 45^{\circ}$ or 60°.
- Describe patterns in and among the values of the sine, cosine and tangent ratios for angles from to 0° to 360°.
- Solve a contextual problem, using trigonometric ratios.

3. Solve problems, using the cosine law and the sine law, including the ambiguous

Section 2.3
pp.100-113

- Sketch a diagram to represent a problem that involves a triangle without a right angle.
- Solve, using primary trigonometric ratios, a triangle that is not a right triangle.
- Explain the steps in a given proof of the sine law and cosine law.
- Sketch a diagram and solve a problem, using the sine law.
- Describe and explain situations in which a problem may have no solution, one solution or two solutions.
- Sketch a diagram and solve a problem, using the cosine law.

