\qquad

Part A: Multiple Choice. (14 marks) \qquad $/ 28=$ \qquad \%

Place the letter of the correct response in the space provided. Please use CAPITAL letters.

1. What is the equation of the axis of symmetry of the function $y=-5(x-4)^{2}+3 ? 1$. \qquad
A) $x=-5$
B) $x=-4$
C) $x=3$
D) $x=4$
2. What is the range of the function $y=5(x+1)^{2}-4$?
3. \qquad
A) $\{y / y \leq-4, y \varepsilon R\}$
B) $\{y / y \geq-4, y \varepsilon R\}$
C) $\{y / y \leq 4, y \varepsilon R\}$
D) $\{y / y \geq 4, y \varepsilon R\}$
4. Which describes the graph of $y=3(x+2)^{2}+4$ when compared to $y=x^{2}$?
5. \qquad
A) opens up, wider, translated 2 unit left and 4 units up
B) opens up, narrower, translated 2 unit right and 4 units up
C) opens up, wider, translated 2 unit right and 4 units up
D) opens up, narrower, translated 2 unit left and 4 units up
6. Which graph represents $y=-\frac{1}{2}(x-3)^{2}-1$?
7. \qquad
A)

B)

C)

D)

\qquad
8. What is the standard form of the quadratic function $f(x)=3(x-1)^{2}-25$?
9. \qquad
A) $f(x)=3 x^{2}-3 x-11$
B) $f(x)=3 x^{2}-6 x-22$
C) $f(x)=3 x^{2}+6 x-22$
D) $f(x)=3 x^{2}-6 x-11$
10. What is the y-intercept of the function $y=-\frac{1}{2}(x-4)^{2}+5$?
11. \qquad
A) -3
B) -4
C) 5
D) 13
12. Which quadratic function when graphed will have $1 x$-intercept?
13. \qquad
A) $y=-2(x-1)^{2}+4$
B) $y=2(x-1)^{2}+4$
C) $y=-2 x^{2}+4$
D) $y=2(x-1)^{2}$
14. The vertex of a parabola is located at $(-5,6)$. If the parabola has a y-intercept
15. \qquad of 231 , which quadratic function represents the parabola?
A) $f(x)=9(x-5)^{2}+6$
B) $f(x)=9(x+5)^{2}+6$
C) $f(x)=-9(x+5)^{2}+6$
D) $f(x)=9(x-5)^{2}-6$
\qquad
16. The path of a volleyball is given by $h=-\frac{1}{2} t^{2}+4 t+3$ where t
17. \qquad is time in seconds and h is height in metres. At what time, in seconds, does the ball reach its maximum height?
A) 3
B) 4
C) 10.5
D) 11
18. What value of ' c ' would make $y=x^{2}+\frac{3}{4} x+c$ a perfect square?
19. \qquad
A) $\frac{9}{4}$
B) $\frac{3}{2}$
C) $\frac{3}{8}$
D) $\frac{9}{64}$
20. What is the vertex form of the quadratic function $y=x^{2}-14 x+15$?
21. \qquad
A) $y=(x-7)^{2}-34$
B) $y=(x-7)^{2}+64$
C) $y=(x-49)^{2}+181$
D) $y=(x-49)^{2}+211$
22. A theatre seats 400 people per show and is currently sold out with a ticket price
23. of $\$ 10$. A survey shows that for every $\$ 1$ per ticket price increase, 25 fewer tickets will be sold. Which function models this situation?
A) $R=(400 x-25)(10+x)$
B) $R=(400-25 x)(10+x)$
C) $R=(400-x)(10+25 x)$
D) $R=(400 x-25)(10+25 x)$
\qquad

Part B: Long Answer Questions. Show ALL workings to receive FULL credit.
13. A soccer ball lying on the ground is kicked downfield and hits the ground 62 m away. The maximum height reached by the ball is 15 m .
a) Algebraically determine the quadratic function that models the height of the ball.
b) Use the function to determine the height of the ball when it is 48 m downfield.

14. Using the process of completing the square, convert $f(x)=-2 x^{2}+12 x-5$ to vertex form.
\qquad / 4
\qquad
15. If the point $(-1,4)$ and $(2,13)$ are on the graph of the quadratic function $f(x)=7 x^{2}+b x+c$, what are the values of b and c ?
/ 4
16. A rectangular region, placed against the wall of a house, is divided into three regions of equal area using a total of 80 m of fencing as shown. Algebraically determine the function which gives the area (A) of the entire region as a function of its width (w), and use this function to calculate the maximum possible area.

