Eastern

School District

Mathematics 2200

 Common Mathematics AssessmentSample 2013

Name:
Mathematics
Teacher:
27 Selected Response
27 marks
11 Constructed Response
FINAL
40 marks

NOTE

Diagrams are not necessarily drawn to scale.

FORMULAE

$$
t_{n}=t_{1}+(n-1) d, n \in N
$$

$$
t_{n}=t_{1} r^{n-1}, n \in N
$$

$$
S_{n}=\frac{t_{1}\left(r^{n}-1\right)}{r-1}
$$

\square

$$
S=\frac{t_{1}}{1-r}
$$

$$
S_{n}=\frac{n}{2}\left(t_{1}+t_{n}\right)
$$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

$$
\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}
$$

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

$$
\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}
$$

Selected Response:

Choose the appropriate response on the answer sheet or SCANTRON.

1. How many terms are in the sequence $\{3,1,-1, \ldots,-91\}$
(A) 43
(B) 45
(C) 46
(D) 48
2. In an arithmetic sequence, $t_{3}=m$ and $t_{4}=n$. Which expression represents t_{6} ?
(A) $2 m-n$
(B) $2 n-m$
(C) $3 n-m$
(D) $3 n-2 m$
3. Which describes the series $\left\{-19,-\frac{19}{2},-\frac{19}{4},-\frac{19}{8}, \ldots\right\}$?
(A) convergent with a sum of -38
(B) convergent with no sum
(C) divergent with a sum of -38
(D) divergent with no sum
4. What is the exact length of BC ?

(A) 6
(B) 12
(C) $4+4 \sqrt{3}$
(D) $4 \sqrt{2}+4 \sqrt{3}$
5. The point $(6,-8)$ lies on the terminal arm of an angle θ in standard position. What is the value of $\sin \theta$?
(A) $-\frac{4}{3}$
(B) $-\frac{4}{5}$
(C) $\frac{3}{5}$
(D) $\frac{4}{5}$
6. Solve: $\cos \theta=-0.6947$, where $0^{\circ} \leq \theta \leq 360^{\circ}$
(A) $\quad \theta=46^{\circ}$ and $\theta=134^{\circ}$
(B) $\quad \theta=46^{\circ}$ and $\theta=314^{\circ}$
(C) $\quad \theta=134^{\circ}$ and $\theta=226^{\circ}$
(D) $\quad \theta=226^{\circ}$ and $\theta=314^{\circ}$
7. What is the length of \boldsymbol{x} ?

(A) 7.2
(B) 10.4
(C) 11.3
(D) 16.2
8. Which represents the function $y=2 x^{2}-4 x-5$?
(A)

(B)

(C)

(D)

9. Which represents a parabola with y-intercept -15 and vertex $(1,-5)$?
(A) $\quad f(x)=-20(x-1)^{2}-5$
(B) $\quad f(x)=-20(x+1)^{2}+5$
(C) $\quad f(x)=-10(x-1)^{2}-5$
(D) $\quad f(x)=-10(x+1)^{2}+5$
10. If $y=2 x^{2}+12 x+10$ is written in the form $y=a(x-p)^{2}+q$, what is the value of \boldsymbol{q} ?
(A) -26
(B) $\quad-8$
(C) 1
(D) 28
11. A rancher plans to use 430 m of fencing to build a cattle enclosure with three equal sections. Which represents the total area of the enclosure in terms of its width, x ?

(A) $\quad A=x(215-2 x)$
(B) $\quad A=x(215-x)$
(C) $\quad A=x(430-2 x)$
(D) $\quad A=x(430-x)$
12. Theresa's incorrect solution to the equation $4 x^{2}-7 x-3=0$ is shown. In which step does the first error occur?

Step $1 \quad x=\frac{7 \pm \sqrt{(-7)^{2}-(4)(4)(-3)}}{2(4)}$
Step 2

$$
x=\frac{7 \pm \sqrt{49-48}}{8}
$$

Step $3 \quad x=\frac{7 \pm \sqrt{1}}{8}$
Step $4 \quad x=1, x=\frac{3}{4}$
(A) 1
(B) 2
(C) 3
(D) 4
13. Which describes the quadratic function that has vertex $(-9,3)$ and passes through the point $(-4,-2)$?
(A) The axis of symmetry is $x=-9$ and the discriminant is negative.
(B) The axis of symmetry is $x=-9$ and the discriminant is positive.
(C) The axis of symmetry is $x=9$ and the discriminant is negative.
(D) The axis of symmetry is $x=9$ and the discriminant is positive.
14. Solve: $2 x(x-3)+5(x-3)=0$
(A) $\quad x=-3, \quad x=-\frac{5}{2}$
(B) $\quad x=-3, x=\frac{5}{2}$
(C) $\quad x=3, \quad x=-\frac{5}{2}$
(D) $\quad x=3, \quad x=\frac{5}{2}$
15. Determine a simplified expression for the value of \boldsymbol{x} :

(A) $2 \sqrt{3}+\sqrt{5}$
(B) $2 \sqrt{3}+3 \sqrt{5}$
(C) $4 \sqrt{3}+\sqrt{5}$
(D) $4 \sqrt{3}+3 \sqrt{5}$
16. Write $4 x^{3} y^{2} \sqrt{5 x y}$ as an entire radical.
(A) $\sqrt{20 x^{7} y^{5}}$
(B) $\sqrt{20 x^{10} y^{5}}$
(C) $\sqrt{80 x^{7} y^{5}}$
(D) $\sqrt{80 x^{10} y^{5}}$
17. Simplify completely: $\quad \frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$
(A) $3 \sqrt{2}-2 \sqrt{3}$
(B) $3 \sqrt{2}+2 \sqrt{3}$
(C) $\frac{3 \sqrt{2}-2 \sqrt{3}}{5}$
(D) $\frac{3 \sqrt{2}+2 \sqrt{3}}{5}$
18. Simplify completely: $\quad \frac{\sqrt[3]{2}}{\sqrt[3]{6}}$
(A) $\frac{\sqrt[3]{3}}{3}$
(B) $\frac{\sqrt[3]{9}}{3}$
(C) $\frac{\sqrt[3]{12}}{6}$
(D) $\frac{\sqrt[3]{72}}{6}$
19. Simplify completely: $\frac{1}{x}-\frac{2}{x+6}$
(A) $-\frac{1}{x}$
(B) $\quad-\frac{1}{2 x+6}$
(C) $\frac{-1}{x(x+6)}$
(D) $\frac{-x+6}{x(x+6)}$
20. Simplify completely: $\frac{9 x-\frac{1}{x}}{6+\frac{2}{x}}$
(A) $\frac{3 x-1}{2}$
(B) $\frac{3 x+1}{2}$
(C) $\frac{9 x-1}{8}$
(D) $\frac{9 x-1}{2(3 x+1)}$
21. Simplify completely: $\frac{25-x^{2}}{x^{2}} \cdot \frac{x^{2}-2 x}{x^{2}+3 x-10}$
(A) $\frac{5-x}{x}$
(B) $\frac{x+5}{x}$
(C) $\frac{(5-x)(x+2)}{x^{2}}$
(D) $\frac{(x+5)(x-2)}{x^{2}}$
22. The graph shown represents the reciprocal of which quadratic function?

(A) $\quad f(x)=x^{2}-5 x+6$
(B) $\quad f(x)=x^{2}+5 x+6$
(C) $\quad f(x)=x^{2}-x-6$
(D) $\quad f(x)=x^{2}+x-6$
23. What is the range of $y=|x+5|$?
(A) $\quad\{y \mid y>-5, y \in \mathbb{R}\}$
(B) $\quad\{y \mid y \geq-5, y \in \mathbb{R}\}$
(C) $\quad\{y \mid y>0, y \in \mathbb{R}\}$
(D) $\quad\{y \mid y \geq 0, y \in \mathbb{R}\}$
24. Which is a solution to the system $\left\{\begin{array}{c}\frac{1}{2} x^{2}+x-y=13 \\ x^{2}-2 x+y=7\end{array}\right.$?
(A) $\quad(-2,-1)$
(B) $\quad(2,-9)$
(C) $\quad(4,-1)$
(D) $(6,-11)$
25. The first four steps of an incorrect solution to the system $\left\{\begin{array}{c}4 x^{2}+3 x-2 y=4 \\ x^{2}-2 x-y=1\end{array}\right.$ are shown. Identify the step in which the first error occurs.

Step 1: $\quad\left\{\begin{array}{c}4 x^{2}+3 x-2 y=4 \\ -2 x^{2}+4 x+2 y=1\end{array}\right.$
Step 2: $\quad 2 x^{2}+7 x=5$
Step 3: $\quad 2 x^{2}+7 x+5=0$
Step 4: $\quad(2 x+5)(x+1)=0$
(A) 1
(B) 2
(C) 3
(D) 4
26. Which represents the inequality $2 x+y>4$?
(A)

(B)

(C)

(D)

27. Which is a solution to $y>-2(x-1)^{2}+3$?
(A) $\quad(0,2)$
(B) $\quad(1,2)$
(C) $\quad(2,0)$
(D) $\quad(2,1)$

Constructed Response:

Answers to be written on this paper in the space provided. Show all workings.
28. The first three terms of an arithmetic sequence are $\{x+4,5 x+1,7 x+4, \ldots\}$. 3 marks Algebraically determine the value of \boldsymbol{x} and state the common difference.
29. The monthly production of crude oil, in barrels, for the first four months for a test well at Hebron is given below. In theory, what is the expected lifetime production of the well, to the nearest barrel?

Month	\# of Barrels
1	40000
2	34000
3	28900
4	24565

30. Calculate the length of CD to the nearest tenth of a cm.

31. From a height of 2 m , a volleyball is hit into the air. After 1 second, the ball reaches a maximum height of 7 m . Write the quadratic function, in the form $y=a(x-p)^{2}+q$, that models the situation and use it to determine the height of the ball at 1.5 seconds.

Function \qquad
Height \qquad
32. Algebraically determine the exact roots, in simplest form:

$$
16\left(x^{2}-1\right)=24(2 x+1)
$$

33. State restrictions on the variable and solve: $\frac{1}{2} m-\sqrt{13-m}=-1$
34. Identify all non-permissible values and solve: $\frac{9 x-3}{x^{2}-x-6}-\frac{6}{x-3}=2$

4 marks
35. Algebraically determine the invariant points, equations of asymptotes, and \mathbf{x} - and \mathbf{y}-intercepts for the functions $f(x)=2 x+4$ and $y=\frac{1}{f(x)}$.

Sketch both graphs on the same set of axes.

36. Solve algebraically: $\quad\left|x^{2}+5 x\right|=2 x \quad 4$ marks
37. The right triangle shown has a perimeter of 24 cm and an area of $(2 y+14) \mathrm{cm}^{2}$. 4 marks Algebraically determine the value(s) of \boldsymbol{x} and \boldsymbol{y}.

38. Algebraically determine the value(s) of \boldsymbol{x} where $y=x^{2}-4 x$ lies above 3 marks $y=x+6$.

ANSWER SHEET

Name: \qquad

Mathematics Teacher: \qquad

1.	A	B	C	D	15.	A	B	C	D
2.	A	B	C	D	16.	A	B	C	D
3.	A	B	C	D	17.	A	B	C	D
4.	A	B	C	D	18.	A	B	C	D
5.	A	B	C	D	19.	A	B	C	D
6.	A	B	C	D	20.	A	B	C	D
7.	A	B	C	D	21.	A	B	C	D
8.	A	B	C	D	22.	A	B	C	D
9.	A	B	C	D	23.	A	B	C	D
10.	A	B	C	D	24.	A	B	C	D
11.	A	B	C	D	25.	A	B	C	D
12.	A	B	C	D	26.	A	B	C	D
13.	A	B	C	D	27.	A	B	C	D
14.	A	B	C	D					

