

Mathematics 2200 Common Mathematics Assessment

Sample 2013

Name: Mathematics Teacher:

27 Selected Response11 Constructed Response

FINAL

TIME: 2 HOURS

NOTE

Diagrams are not necessarily drawn to scale.

FORMULAE

$t_n = t_1 + (n-1)d , n \in N$		$t_n = t_1 r^{n-1}$, $n \in N$
$S_n = \frac{n}{2}(t_1 + t_n)$		$S_n = \frac{t_1(r^n - 1)}{r - 1}$
	_	
$S = \frac{t_1}{1 - r}$		$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$\frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}$	$a^2 = b^2 + c^2 - 2bccosA$	$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$

27 marks 40 marks

67 Marks

Selected Response:

Choose the appropriate response on the answer sheet or SCANTRON.

- 1. How many terms are in the sequence $\{3, 1, -1, \dots, -91\}$
 - (A) 43 (B) 45
 - (C) 46
 - (D) 48
- 2. In an arithmetic sequence, $t_3 = m$ and $t_4 = n$. Which expression represents t_6 ?
 - (A) 2m n(B) 2n - m
 - (C) 3n m
 - (D) 3n 2m

3. Which describes the series
$$\left\{-19, -\frac{19}{2}, -\frac{19}{4}, -\frac{19}{8}, ...\right\}$$
?

- (A) convergent with a sum of -38
- (B) convergent with no sum
- (C) divergent with a sum of -38
- (D) divergent with no sum
- 4. What is the exact length of BC?

5. The point (6, -8) lies on the terminal arm of an angle θ in standard position. What is the value of $\sin \theta$?

(A) $-\frac{4}{3}$ (B) $-\frac{4}{5}$ (C) $\frac{3}{5}$ (D) $\frac{4}{5}$ 6. Solve: $\cos \theta = -0.6947$, where $0^{\circ} \le \theta \le 360^{\circ}$

- (A) $\theta = 46^{\circ} \text{ and } \theta = 134^{\circ}$
- (B) $\theta = 46^{\circ} \text{ and } \theta = 314^{\circ}$
- (C) $\theta = 134^\circ \text{ and } \theta = 226^\circ$
- (D) $\theta = 226^{\circ} \text{ and } \theta = 314^{\circ}$
- 7. What is the length of *x*?

(A)	7.2
(B)	10.4
(C)	11.3
(D)	1()

- (D) 16.2
- 8. Which represents the function $y = 2x^2 4x 5$?

9. Which represents a parabola with y-intercept -15 and vertex (1, -5)?

- (A) $f(x) = -20(x-1)^2 5$
- (B) $f(x) = -20(x+1)^2 + 5$
- (C) $f(x) = -10(x-1)^2 5$ (D) $f(x) = -10(x+1)^2 + 5$
- 10. If $y = 2x^2 + 12x + 10$ is written in the form $y = a(x p)^2 + q$, what is the value of q?
 - (A) –26
 - (B) -8
 - (C) 1
 - (D) 28
- 11. A rancher plans to use 430 m of fencing to build a cattle enclosure with three equal sections. Which represents the total area of the enclosure in terms of its width, x?

- (A) A = x(215 2x)
- (B) A = x(215 x)
- (C) A = x(430 2x)
- (D) A = x(430 x)
- 12. Theresa's incorrect solution to the equation $4x^2 7x 3 = 0$ is shown. In which step does the **first** error occur?

Step 1		$x = \frac{7 \pm \sqrt{(-7)^2 - (4)(4)(-3)}}{2(4)}$
Step 2		$x = \frac{7 \pm \sqrt{49 - 48}}{8}$
Step 3		$x = \frac{7 \pm \sqrt{1}}{8}$
Step 4		$x = 1$, $x = \frac{3}{4}$
(A) (B) (C) (D)	1 2 3 4	

- 13. Which describes the quadratic function that has vertex (-9, 3) and passes through the point (-4, -2)?
 - (A) The axis of symmetry is x = -9 and the discriminant is negative.
 - (B) The axis of symmetry is x = -9 and the discriminant is positive.
 - (C) The axis of symmetry is x = 9 and the discriminant is negative.
 - (D) The axis of symmetry is x = 9 and the discriminant is positive.

14. Solve: 2x(x-3) + 5(x-3) = 0

(A)	x = -3 ,	$x = -\frac{5}{2}$
(B)	x = -3 ,	$x = \frac{5}{2}$
(C)	x = 3 ,	$x = -\frac{5}{2}$
(D)	<i>x</i> = 3 ,	$x = \frac{5}{2}$

15. Determine a simplified expression for the value of *x*:

(A)
$$2\sqrt{3} + \sqrt{5}$$

(B) $2\sqrt{3} + 3\sqrt{5}$
(C) $4\sqrt{3} + \sqrt{5}$
(D) $4\sqrt{3} + 3\sqrt{5}$

16. Write $4x^3y^2\sqrt{5xy}$ as an entire radical.

(A)
$$\sqrt{20x^7y^5}$$

(B) $\sqrt{20x^{10}y^5}$
(C) $\sqrt{80x^7y^5}$
(D) $\sqrt{80x^{10}y^5}$

17. Simplify completely:
$$\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$$
(A) $3\sqrt{2}-2\sqrt{3}$
(B) $3\sqrt{2}+2\sqrt{3}$
(C) $\frac{3\sqrt{2}-2\sqrt{3}}{5}$
(D) $\frac{3\sqrt{2}+2\sqrt{3}}{5}$

18.	Simplify	completely:	$\frac{\sqrt[3]{2}}{\sqrt[3]{6}}$	
	(A)	$\frac{\sqrt[3]{3}}{3}$		
	(B)	$\frac{\sqrt[3]{9}}{3}$		
	(C)	$\frac{\sqrt[3]{12}}{6}$		
	(D)	$\frac{\sqrt[3]{72}}{6}$		
19.	Simpl	ify completely:	$\frac{1}{x} - \frac{2}{x+6}$	
	(A)	$-\frac{1}{x}$		
	(B)	$-\frac{1}{2x+6}$		
	(C)	$\frac{-1}{x(x+6)}$		
	(D)	$\frac{-x+6}{x(x+6)}$		
20.	Simpl	ify completely:	$\frac{9x - \frac{1}{x}}{6 + \frac{2}{x}}$	
	(A)	$\frac{3x-1}{2}$		
	(B)	$\frac{3x+1}{2}$		
	(C)	$\frac{9x-1}{8}$		
	(D)	$\frac{9x-1}{2(3x+1)}$		
			$25 - r^2$	$r^2 - 2$

21. Simplify completely: $\frac{25-x^2}{x^2} \cdot \frac{x^2-2x}{x^2+3x-10}$

(A)
$$\frac{5-x}{x}$$

(B)
$$\frac{x+5}{x}$$

(C)
$$\frac{(5-x)(x+2)}{x^2}$$

(D) $\frac{(x+5)(x-2)}{x^2}$

22. The graph shown represents the reciprocal of which quadratic function?

- (A) $f(x) = x^2 5x + 6$ (B) $f(x) = x^2 + 5x + 6$ (C) $f(x) = x^2 - x - 6$
- (D) $f(x) = x^2 + x 6$
- 23. What is the range of y = |x + 5|?
 - (A) $\{y|y > -5, y \in \mathbb{R}\}$
 - (B) $\{y | y \ge -5, y \in \mathbb{R}\}$
 - (C) $\{y|y > 0, y \in \mathbb{R}\}$
 - (D) $\{y|y \ge 0, y \in \mathbb{R}\}$

24.	Which is a solution to the system	$\begin{cases} \frac{1}{2}x^2 + x - y = 13\\ x^2 - 2x + y = 7 \end{cases}$?
-----	-----------------------------------	--

- $\begin{array}{ll}
 (A) & (-2,-1) \\
 (B) & (2,-9) \\
 (C) & (4,-1)
 \end{array}$
- (D) (6, -11)
- 25. The first four steps of an incorrect solution to the system $\begin{cases} 4x^2 + 3x 2y = 4 \\ x^2 2x y = 1 \end{cases}$ are shown. Identify the step in which the **first** error occurs.

Step 1	:	$\begin{cases} 4x^2 + 3x - 2y = 4\\ -2x^2 + 4x + 2y = 1 \end{cases}$				
Step 2:		$2x^2 + 7x = 5$				
Step 3:		$2x^2 + 7x + 5 = 0$				
Step 4:		(2x+5)(x+1) = 0				
(A) (B) (C) (D)	1 2 3 4					

26. Which represents the inequality 2x + y > 4?

27. Which is a solution to $y > -2(x - 1)^2 + 3$?

(A)	(0,2)
(B)	(1,2)
(C)	(2,0)
(D)	(2,1)

Constructed Response:

Answers to be written on this paper in the space provided. Show all workings.

28. The first three terms of an arithmetic sequence are $\{x + 4, 5x + 1, 7x + 4, ...\}$. ^{3 marks} Algebraically determine the value of **x** and state the common difference.

29. The monthly production of crude oil, in barrels, for the first four months for a test well at Hebron is given below. In theory, what is the expected lifetime production of the well, to the nearest barrel?

Month	# of Barrels
1	40 000
2	34 000
3	28 900
4	24 565

30. Calculate the length of CD to the nearest tenth of a cm.

4 marks

3 marks

31. From a height of 2 m, a volleyball is hit into the air. After 1 second, the ball reaches a maximum height of 7 m. Write the quadratic function, in the form $y = a(x - p)^2 + q$, that models the situation and use it to determine the height of the ball at 1.5 seconds.

3 marks

4 marks

Function_			

Height_____

32. Algebraically determine the **exact** roots, in simplest form:

 $16(x^2 - 1) = 24(2x + 1)$

33. State restrictions on the variable and **solve**: $\frac{1}{2}m - \sqrt{13 - m} = -1$ 4 marks

34. Identify all non-permissible values and **solve**:

$$\frac{9x-3}{x^2-x-6} - \frac{6}{x-3} = 2$$
 ^{4 marks}

35. Algebraically determine the **invariant points**, **equations of asymptotes**, and 4 marks**x- and y-intercepts** for the functions f(x) = 2x + 4 and $y = \frac{1}{f(x)}$.

Sketch both graphs on the same set of axes.

36. Solve algebraically: $|x^2 + 5x| = 2x$

4 marks

37. The right triangle shown has a perimeter of 24 *cm* and an area of $(2y + 14) cm^2$. ^{4 marks} Algebraically determine the value(s) of **x** and **y**.

38. Algebraically determine the value(s) of **x** where $y = x^2 - 4x$ lies above y = x + 6.

3 marks

Mathematics 2200 Common Mathematics Assessment – Sample 2013

ANSWER SHEET

Name: _____

Mathematics Teacher:_____

1.	А	В	С	D	15.	А	В	С	D
2.	А	В	С	D	16.	А	В	С	D
3.	А	В	С	D	17.	А	В	С	D
4.	А	В	С	D	18.	А	В	С	D
5.	А	В	С	D	19.	А	В	С	D
6.	А	В	С	D	20.	А	В	С	D
7.	А	В	С	D	21.	А	В	С	D
8.	А	В	С	D	22.	А	В	С	D
9.	А	В	С	D	23.	А	В	С	D
10.	А	В	С	D	24.	А	В	С	D
11.	А	В	С	D	25.	А	В	С	D
12.	А	В	С	D	26.	А	В	С	D
13.	А	В	С	D	27.	А	В	С	D
14.	А	В	С	D					