Name _____

1. What is the measure of the smallest acute angle in the triangle below?

a) 33° b) 40)°
--------------	----

- c) 50° d) 90°
- 2. What three angles have a reference angle of 54° ?
 - a) 99°, 144°, 234° b) 108°, 162°, 216° c) 126°, 234°, 306° d) 144°, 234°, 324°
- 3. Using the right triangle below, find the EXACT value of $\sin A$.
 - a) $\frac{1}{\sqrt{3}}$ b) $\frac{2}{\sqrt{3}}$ c) $\frac{1}{3}$ d) $\frac{1}{2}$

- 4. The terminal arm of an angle *A* in standard position passes through the point with coordinates (40, -9). What are the **exact** values of the three primary trigonometric ratios for angle *A*?
 - a) $sinA = -\frac{41}{9}, cosA = \frac{41}{40}, tanA = -\frac{9}{40}$ b) $sinA = \frac{40}{41}, cosA = -\frac{9}{41}, tanA = -\frac{40}{9}$ c) $sinA = -\frac{40}{41}, cosA = \frac{9}{41}, tanA = -\frac{9}{40}$ d) $sinA = -\frac{9}{41}, cosA = \frac{40}{41}, tanA = -\frac{9}{40}$

5. An angle θ is in standard position such that $\cos \theta = \frac{1}{9}$. What are the possible values of θ , to the nearest degree, if $0^\circ \le \theta < 360^\circ$?

a) 6° and 174° b) 6° and 276° c) 84° and 264° d) 84° and 276°

6. Find the value of *a*, to the nearest tenth, given the equation $\frac{a}{\sin 30^o} = \frac{12}{\sin 115^o}$.

a) 6.6 b)21.8 c) 24.0 d)24.6

7. Determine, to the nearest tenth of a centimetre, the two possible values of a.

- a) 34.3cm and 26.3cm b) 55.8cm and 34.3cm
- c) 72.8cm and 26.3cm d) 72.8cm and 55.8cm
- 8. Which strategy would be best to find the value of *x* in the triangle below?
 - a) the cosine law
 b) the primary trigonometric ratios
 c) the sine law
 d) Quadratic formula
- 9. Determine the measure of *x* to the nearest tenth of a degree.
 - a) 18.1° b) 25.6°
 - c) 71.9° d)136.3°

b) $m < B = 158^{\circ}, m < C = 84^{\circ}, and c = 5.0$

d) $m < B = 23, m < C = 7^{\circ}, and c = 28.2$

27.19

34cm

- 10. In $\triangle ABC$ below, $m < A = 152^{\circ}$, b = 19, and a = 23.5. What are the measures of the unknown angles and the lengths of the unknown sides of the triangle?
 - a) $m < B = 22^{\circ}, m < C = 6^{\circ}, and c = 5.0$
 - c) $m < B = 26, m < C = 174^{\circ}, and c = 28.7$

11. What is the equation of the axis of symmetry of $f(x) = -6(x-3)^2 - 7$?

a) x = -7 b) x = -6 c) x = -3 d) x = 3

- 21. The school cafeteria sells 120 bottles of juice at a cost of \$2. If for every 20 cent decrease in cost there is an increase in sales of 25 bottles, which equation describes the revenue?
 - a) R = (120 25x)(2 + 0.20x) b) R = (120 20x)(2 + 25x)
 - c) R = (120 + 20x)(2 25x) d) R = (120 + 25x)(2 0.20x)

22. What are the zeros of the function f(x) = 3x(x+2) + 2(x+2)?

a)
$$-2, -\frac{3}{2}$$
 b) $-2, -\frac{2}{3}$ c) $2, \frac{2}{3}$ d) $2, \frac{3}{2}$

23. What values of b will make $x^2 + bx + 19$ a perfect square trinomial?

a)
$$\pm \frac{\sqrt{19}}{2}$$
 b) $\pm \sqrt{19}$ c) $\pm 2\sqrt{19}$ d) $\pm \frac{1}{2}$

24. Which function has $x = \frac{-k}{4p}$ as its axis of symmetry?

a) $y = \frac{1}{2}px^2 - kx + q$ b) $y = \frac{1}{2}px^2 + kx + q$ c) $y = 2px^2 - kx + q$ d)) $y = 2px^2 + kx + q$

25. What is the value of the discriminant for f(x) = 0 given the graph of f(x) below?

26. Identify the line in which **first** error occurs in the "solution" to $3x^2 - 12x - 1 = 0$.

- $x = \frac{-(-12) \pm \sqrt{(-12)^2 4(3)(-1)}}{2(3)}$ LINE 1 a) LINE 1 $x = \frac{12 \pm \sqrt{144 - 12}}{6}$ $x = \frac{12 \pm \sqrt{136}}{6}$ b) LINE 2 LINE 2 c) LINE 3 LINE 3 d) LINE 4 $x = \frac{12 \pm 2\sqrt{34}}{2}$ LINE 4 $3\sqrt{175} + 6\sqrt{63}$ 27. Simplify a) $9 + \sqrt{238}$ b) $33\sqrt{7}$ c) $9 + 2\sqrt{2}$ d) 114 $\sqrt[5]{160u^{10}t^{15}}$ 28. Simplify c) $4u^2t^3(\sqrt[5]{5})$ b) $2u^3t^2(\sqrt[5]{5})$ a) $2u^2t^2(\sqrt[5]{5})$ d) $10u^2t^3(\sqrt[5]{4})$ $\frac{5}{6}(\sqrt[3]{1080}) + \frac{\sqrt[3]{135}}{8}$ 29. Simplify
- a) $\frac{43}{8}\sqrt[3]{5}$ b) $\frac{23}{24}\sqrt[3]{6}$ c) $\frac{5}{48}\sqrt[3]{5}$ d) $\frac{5}{48} + 270\sqrt{2}$

Answer all questions on this paper and show all workings for full credit. Note the choice in the last question.

30. If the terminal arm of an angle, θ , in standard position lies on the line 6y + x = 0, $x \ge 0$, determine the value of θ to the nearest tenth of a degree.

31. An angle θ , in standard position, has its terminal arm in Quadrant III and $\tan(\theta) = \frac{3}{4}$.

- (a) Sketch the angle and the reference triangle, including the lengths of the sides of the reference triangle.
- (b) Determine the exact value of $sin(\theta)$ and $cos(\theta)$, in lowest terms.
- (c) What is the measure of the reference angle?
- (d) What is the measure of θ ?
- 32. Find the value of h in the diagram below. Give your answer to the nearest hundredth of a metre.

33. A drive belt wraps around three pulleys, A, B, and C, as shown. What is the measure of $\angle A$?

- 34. Express the quadratic function $y = -3x^2 + 12x 10$ in vertex form.
- 35. In $\triangle BHT$, b = 10 cm, h = 13 cm, $\angle H = 76^{\circ}$. Solve the triangle.
- 36. A ball is thrown from an initial height of 1 m and follows a parabolic path as shown. After 2 seconds the ball reaches a maximum height of 21 m. **Algebraically** determine the quadratic function that models the path followed by the ball, and use it to determine the approximate height of the ball at 3 seconds. Give your answer to the nearest tenth of a metre.
- 37. The cafeteria at Holy Spirit High sells energy bars for \$2.25. At this price, the cafeteria will sell 120 bars per month. Mrs. Holloway determines that for every 5 cent decrease in price, eight more bars will be sold each month. Algebraically determine the price that will give the cafeteria maximum revenue.
- 38. The student council of Holy Spirit High plans to create a new rectangular flower garden in the grassy area behind the cafeteria. The flower bed will be 6m wide and 9m long and it will be surrounded by a concrete border of constant width with the same area as the flower bed. **Algebraically** determine the width, *w*, of the concrete border.
- 39. Factor $2(x+3)^2 11(x+3) + 15$ OR $9(x-2)^2 \frac{1}{4}(x-4)^2$ completely.
- 40. Simplify each of the following and state restrictions.

a)
$$-9x^2y\sqrt{40x^5y^6}$$
 b) $\frac{-72\sqrt{y^9}}{6\sqrt{y^3}}$ c) $3\sqrt{xy} \bullet 5\sqrt{x^3}$

d)
$$\sqrt{3x} \left(\sqrt{4x^2 + 2\sqrt{x}} \right)$$
 e) $\left(3\sqrt{x} - 1 \right) \left(2\sqrt{x} + 7 \right)$ f) $\frac{\sqrt[3]{24x^3}}{\sqrt[3]{8x}}$

g)
$$\frac{6\sqrt{x^5}}{\sqrt{25x^2}}$$

41. Simplify each of the following.

a)
$$4\sqrt{5} - 2\sqrt{75} + 3\sqrt{25}$$

b) $\frac{1}{3}\sqrt[3]{72} - \frac{2}{3}\sqrt[3]{54} - \frac{1}{2}\sqrt[3]{108} - \frac{5}{6}\sqrt[3]{24}$
c) $2\sqrt{5}(3\sqrt{2} + 4\sqrt{3})$
d) $\frac{2\sqrt{3} - \sqrt{6}}{3\sqrt{6} + 2\sqrt{3}}$

42. Solve each of the following.

a)
$$\sqrt{x+5} = \sqrt{3x+1}$$
 b) $\sqrt{7x+25} - x = 1$

