Advanced Mathematics 2200

Unit 1: Sequences and Series
Text: Pre-Calculus 11
Chapter 1
By the end of this unit, it is expected that students will:

Outcome
1. Analyze arithmetic sequences and series to solve problems.
- Identify the assumptions made when defining an arithmetic sequence or series.
- Provide and justify an example of an arithmetic sequence.

- Provide and justify an example of an arithmetic sequence.
- Derive a rule for determining the general term of an arithmetic sequence.
- Determine t_{1}, d, n, or t_{n} in a problem that involves an arithmetic sequence or series.
- Describe the relationship between arithmetic and linear functions.
- Derive a rule for determining the sum of n terms of an arithmetic series.
- Determine t_{1}, d, n, or S_{n} in a problem that involves an arithmetic series.

Section 1.1
Pages 6-21

Section 1.2
Pages 22 - 31

Section 1.3
Pages 32-45

- Provide and justify an example of a geometric sequence.
- Derive a rule for determining the general terms of a geometric sequence.
- Determine t_{1}, r, n, or t_{n} in a problem that involves a geometric sequence.
- Derive a rule for determining the sum of n terms of a geometric series.
- Determine t_{1}, r, n, or t_{n} in a problem that involves a geometric series.
- Solve a problem that involves a geometric sequence or series.
- Explain why a geometric series is convergent or divergent.
- Generalize, using inductive reasoning, a rule for determining the sum of an infinite geometric series.

$<$	Review	$<$ Pages 66-68
$<$	Practice Test	$<$ Pages 69-70

