Advanced Mathematics 2200 Unit 1: Sequences and Series

Text: Pre-Calculus 11

Chapter 1

By the end of this unit, it is expected that students will:

Outcome	Text Book
1. Analyze arithmetic sequences and series to solve problems.	
 Identify the assumptions made when defining an arithmetic sequence or series. Provide and justify an example of an arithmetic sequence. Derive a rule for determining the general term of an arithmetic sequence. Determine t₁, d, n, or t_n in a problem that involves an arithmetic sequence or series. Describe the relationship between arithmetic and linear functions. 	Section 1.1 Pages 6 – 21
 Derive a rule for determining the sum of n terms of an arithmetic series. Determine t₁, d, n, or S_n in a problem that involves an arithmetic series. 	Section 1.2 Pages 22 – 31
2. Analyze geometric sequences and series to solve problems.	
 Identify assumptions made when identifying a geometric sequence or series. Provide and justify an example of a geometric sequence. Derive a rule for determining the general terms of a geometric sequence. Determine t₁, r, n, or t_n in a problem that involves a geometric sequence. 	Section 1.3 Pages 32 – 45
 Derive a rule for determining the sum of <i>n</i> terms of a geometric series. Determine t₁, r, n, or t_n in a problem that involves a geometric series. Solve a problem that involves a geometric sequence or series. 	Section 1.4 Pages 46 – 57
 Explain why a geometric series is convergent or divergent. Generalize, using inductive reasoning, a rule for determining the sum of an infinite geometric series. 	Section 1.5 Pages 58 – 65
< Review	< Pages 66 – 68
< Practice Test	< Pages 69 – 70